这项研究来自以色列魏茨曼科学研究所。研究人员发现,数千个能够编码蛋白质的基因表达情况在两性之间存在差别。这些基因中的有害突变倾向于在人群中积累,而且具有较高的基因频率,同时该研究也解释了出现这种现象的原因。这些基因的基因图谱已经发表在[db:tags]MC Biology上,它进一步说明了男性和女性经历了不同而又互相联系的演化历程。

BMC Biology上 揭晓男性和女性经历的不同而又互相联系的演化历程

几年前,魏茨曼科学研究所分子遗传所的Shmuel Pietrokovski 教授和Moran Gershoni博士意识到,人类某些特定疾病的发病率普遍较高,这引起了他们的关注。一个典型案例是,在希望生育的夫妇中,大约15%被诊断为不孕不育,这一数据说明导致生育能力降低的突变相当普遍。

但这种现象同我们的常识相违背——这类减少后代数量,进而影响存活个体数的突变,应该在自然选择过程中很快被淘汰掉,但为什么这种疾病的患病率依然如此之高呢?。

寻找漏网之鱼

Pietrokovski和Gershoni发现,那些特定影响精子形成的基因突变能够保留下来的原因是,这些基因仅仅在男性中表达。当一个突变只能影响种群中的一半个体,那么无论危害多大,它都能够通过另一半个体畅通无阻传递给下一代。

在目前的研究中,研究人员扩大了他们分析的范围,不仅局限在生殖所必需的基因中,而是在两性间表达不相同的基因。为了确定这些基因,研究人员将眼光放在了GTEx(Genotype-Tissue Expression)项目上,该项目拥有一座人类基因表达的数据库,这些基因表达数据来自近550名成年捐赠者提供的器官和组织样本。该项目使得我们第一次绘制两性之间具有差异表达的基因的基因图谱。

BMC Biology上 揭晓男性和女性经历的不同而又互相联系的演化历程

Pietrokovski和Gershoni分析了大约两万个编码蛋白的基因,按照性别将它们分类,以找出那些存在差异表达的基因。他们最终发现,大约6500个基因的表达活性与性别有关,它们至少在人体某一个组织中存在差异。例如,一些基因在男性皮肤中的表达量要高于女性,,这些基因与体毛的生长有关。同样,有关肌肉生长的基因在男性中表达量更高,而与脂肪储藏有关的基因则在女性中表达量更高。

随后,研究人员关注了这些突变积累的倾向。他们希望揭示,自然选择是否会给这些特定的基因较大或是较小的选择压力。也就是说,这些有害突变会多大程度上被淘汰掉,或是在种群中保留下来?事实上,研究人员发现在这类基因中,选择的效率要低些。“越是在单个性别中所特有的基因,承受的自然选择压力也就越小。另一个差异是:在男性之中,自然选择的程度更低。”Gershoni说。

尽管研究人员尚未给这种差异一个完备的解释,但是他们表示,20世纪30年代提出的性别演化理论指出:“在很多物种中,雌性能产生的后代数量十分有限,而雄性可以产生的后代在理论上却要多得多。因此,物种中存活个体的数量更依赖于能够生育的雌性的数量而不是雄性。”Pietrokovski解释道:“因此自然选择会对这些基因放松警惕,让那些只对雄性有害的基因成为漏网之鱼。

其他表达差异

BMC Biology上 揭晓男性和女性经历的不同而又互相联系的演化历程

除了生殖器官外,研究人员发现在乳腺中存在一些与性别相关的基因。这本并不出人意料,但令人惊奇的是,这些基因中大约一半都在男性中表达。由于男性的乳腺“设备齐全”但是基本上不发挥作用,因此研究人员推测这些基因可能与抑制泌乳有关。

另一些基因差异表达的场所则有些出人意料。一些基因仅仅在女性的左心室中表达,其中一个基因也与钙的摄取有关,它在年轻女性中的表达量非常高,但随着年龄的增长,表达量急剧衰减。研究人员认为,这个基因在更年期到来之前都会具有活性,同时保护心脏;但在其表达关闭之后,会导致心脏病和骨质疏松。

另一个主要在女性中表达的基因在大脑中具有活性,尽管目前这个基因的具体功能还不明晰,但是科学家认为此基因可能参与对神经系统的保护,避免患上帕金森病,这种疾病在男性中发病率较高、发病时间也较早。研究人员也确定了,在女性肝脏中表达的基因能够调节药物代谢,这为在药物代谢过程中两性之间的差异提供了分子依据。

“在基础的基因组方面,我们所有人之间都是近乎相同的,但是个体的利用不同。”Gershoni说。“因此谈到两性之间的不同,我们意识到演化主要是在基因表达层面发挥作用。”Pietrokovski补充道:“矛盾的是,在与性别相关的基因中,有害突变反而更容易留下来,也包括那些使生育能力降低的基因。从这种优势中,男性和女性经历了不同的选择压力,至少在某种程度上,人类演化应该被看做是协同进化。

不过,研究人员依然需要进一步阐明,这些能够引起疾病和药物反应的基因,为什么在两性之间存在差异。

如果光变成和水一样的液体,它会发生什么?这并不是一个脑洞。近日,科学家们首次在室温下制造出液态光,让光像水一样在某个物体周围流动、弯曲和环绕。

BMC Biology上 揭晓男性和女性经历的不同而又互相联系的演化历程

图 | 艺术家对液态光的想象动画

此次突破由意大利CNR纳米技术研究所和加拿大蒙特利尔理工学院的科研人员共同完成,相关论文发表在 6 月 5 日的《自然·物理》上。该研究的成功实施为量子流体力学的进一步发展铺平了道路,也可能为室温超导的实现方法以及新型电子元件提供灵感。

BMC Biology上 揭晓男性和女性经历的不同而又互相联系的演化历程

图丨上图为一般液体碰到障碍的反应;下图为液态光碰到障碍的反应

其实,在某些特定情况下,光的确可以变成液体,成为一种超流体,但是,要实现这种效应需要非常苛刻的条件,因为液态光属于玻色-爱因斯坦凝聚态——这种凝聚态的又称为“物质的第五态”(共有六种物态,其他五个分别为气态、液态、固态、等离子态、和费米子凝聚态)。一般情况下,类似的物态只能在接近绝对零度(零下摄氏273度)的低温下出现。

团队首席科学家、来自意大利 CNR 纳米技术研究所的 Daniele Sanvitto说:“此次工作中最不同寻常的是,我们证明了超流体现象也可以在室温的环境条件下实现”。

BMC Biology上 揭晓男性和女性经历的不同而又互相联系的演化历程

图丨该项目的两位负责人Daniele Sanvitto 和 Stéphane Kéna-Cohen

研究团队的另一名负责人 Stéphane Kéna-Cohen 则描述了液态光一个更为戏剧化的效果:不同于一般液体,液态光遇到障碍只会平滑地绕过去,不会产生任何波纹和漩涡,表现出零摩擦和零粘性这两个特性。

BMC Biology上 揭晓男性和女性经历的不同而又互相联系的演化历程

图丨随着能量的增加,流体在经过物质时逐渐有了超流体的性质。四组对比图分别描述的是电磁极化子的分布、强度、动量、和密度

不难看出,液态光的制备方法与金属超导的实现方法有相似之处:两者都只能在极其低温的条件下才能被观察到,而且持续的时间非常短。

BMC Biology上 揭晓男性和女性经历的不同而又互相联系的演化历程

图丨该实验的光学设置,两个镜片之间存在一层极薄的有机分子片

那么,这一次科学家是如何在室温条件下制造出液态光的?据Stéphane Kéna-Cohen介绍,为了达到这个目的,他们把一个 130 纳米厚的有机分子切片放在了两个反射率极高的镜片之间,形成一种类似三明治的结构。

然后,研究人员用周期为 35 飞秒的激光脉冲轰击这个系统,使得光子在镜片间来回弹射。在这个过程中,光子与中间的有机分子急速交错,从而形成了一种具备光-物质二元属性的液态光。简而言之,光子和有机分子中的电子相耦合便形成了液态光。

BMC Biology上 揭晓男性和女性经历的不同而又互相联系的演化历程

图丨极化激元

该实验中的这种耦合体叫做极化激元,是一种准粒子。它是由电磁波之间的强烈耦合以及带有电偶极子或磁偶极子的激发作用中诞生。简单来说,极化激元的形成也可看为一颗受激的光子。

极化激元-超流体的概念最早于2007年就被提出,当时的研究者就提出了假设,这类超流体的最大特点之一就是有可能在室温下被实现。

BMC Biology上 揭晓男性和女性经历的不同而又互相联系的演化历程

图丨低能和高能的其他测量成像对比,体现了超流体物态的形成

这次的突破将对未来的学术研究和实际应用产生巨大影响。在学术研究上,除了可以让科学家在常温下研究与玻色-爱因斯坦凝聚态相关的基本现象,液态光还可以为量子流体力学提供更好的研究对象。

至于其实际效用,Stéphane Kéna-Cohen说:“这次成果不但展现了有关玻色-爱因斯坦凝聚态的基础性质,还能启发我们设计未来的光子超流体设备,这些设备很可能实现能量上的零损耗”。

此前,在与该实验原理相似的超导体研究中,制造接近零电阻的材料往往需要进行严格的极度冷冻处理。如果利用本次的液态光制备方法,工程师可以在室温条件下生产出更高效的超导材料设备,例如激光器、发光二极管、太阳能电池板和光伏电池等,而且这些装置可以在很大程度上避免光子跟障碍物接触带来的能量损失。

- 延伸阅读:

玻色-爱因斯坦凝聚态

近几年来,科学家制造出来的新型物质种类越来越多,制备方法也正不断走向常规化。无论是此前的金属氢、时间晶体、负质量超流体,还是这次的液态光,这些充满想象力的发现都利用了物质在极端情况下的奇异状态。

其中,上文提到的玻色-爱因斯坦凝聚态便是其中之一,这种凝聚态的又称为“物质的第五态”(共有六种物态,其他5个分别为气态、液态、固态、等离子态、和费米子凝聚态),遵从量子力学而非经典物理,也是本此研究中最重要的理论支柱。

BMC Biology上 揭晓男性和女性经历的不同而又互相联系的演化历程

图丨1953年,萨特延德拉·纳特·玻色盯着一张爱因斯坦的照片

80 年前,爱因斯坦和印度物理学家玻色就基于量子力学预言了这一物态的存在,爱因斯坦甚至因为其太过奇特的性质而对自己的理论产生了怀疑。

该物态在试验中出现是在 1938 年,科学家在2.17K的温度条件下发现氦的同位素,氦-4突然从正常流体突然转变为粘性为零的超流体。然而,当时人们还未把超流现象和爱因斯坦的理论联系起来。

直到 1995 年,科罗拉多大学的Eric Cornell和Carl Wieman才制造出来真正的玻色-爱因斯坦凝聚态物质——约两千个铷原子的聚合体。

为了冷却这堆原子,这两位科学家也是够拼的,首先用激光技术强行降温,然后在用磁场把较热的原子一点一点削掉,最后才降到了100nK(百万分之一度)的温度,不过研究成果最终还是为他们赢得了2001年的诺贝尔奖。

BMC Biology上 揭晓男性和女性经历的不同而又互相联系的演化历程

图丨1995年试验:用激光(红色箭头)和磁场(蓝色箭头)对铷原子(绿色区域)降温,最终波色-爱因斯坦凝聚体在绿色区域出现

由此可见,这一回的常温液态光简直6到飞起!在不远的未来,我们期待这种物态会呈现出更多神奇的物理特性,继续为人类带来意想不到的新发现。

神奇的超流体现象

零粘性、零摩擦、遇到障碍物不会产生皱纹……为什么液态光会有这些不可思议的特质?这得从一种叫超流体的特殊现象说起。

超流体现象是液体或气体极端条件下表现出粘性为零的现象。因为流动时不对周围产生摩擦力,其机械能损失也为零,如果我们将超流体放置于环状容器中,由于没有摩擦力,它可以永无止尽地流动。而表现出该性质的物质被称为超流体,此次制造出的液态光就是超流体状态下的光。

BMC Biology上 揭晓男性和女性经历的不同而又互相联系的演化历程

图丨如你所见,超流体流经障碍物时不产生任何波纹

超流体一般只存在于接近绝对零度的极端环境中,因为多数超流现象是玻色-爱因斯坦凝聚态的体现——当粒子聚合物冷却至一定程度时,就会以最低能态凝聚,此时它们处于一种基于波粒二象性形成的半量子态,故费米子可以像玻色子一样在狭小的空间内凝聚。

为了方便大家理解,就是一团粒子在很冷很冷的时候抱在一起了。他们抱团之后彼此重合、不分你我,仿佛许多粒小水滴聚合成大水潭一样。如此一来,因为其高度相干的量子性质,流动时摩擦力和粘性消失也不足为奇了。

超流现象是玻色-爱因斯坦凝聚态的一种体现,但不是所有超流体都处于玻色-爱因斯坦凝聚态。与之相对应的还有费米子凝聚态,适用于对超导体的理论描述。